
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

E-mail addr
Journal of Sound and Vibration 302 (2007) 398–402

www.elsevier.com/locate/jsvi
Short Communication

Strongly nonlinear vibrations of damped oscillators with
two nonsmooth limits

V.N. Pilipchuk

Department of Theoretical and Applied Mechanics, The National University, Dnepropetrovsk 49050, Ukraine

Received 9 August 2006; received in revised form 22 November 2006; accepted 27 November 2006

Available online 22 January 2007
Abstract

A family of strongly nonlinear oscillators with a generalized power form elastic force and viscous damping is considered.

An explicit analytical solution is obtained as a combination of smooth and nonsmooth functions. Two different

nonsmooth functions involved into the solution are associated with two different nonsmooth limits of the oscillator as the

exponent becomes either zero or infinity. As a result, the solution is drastically simplified to give the best match with

numerical tests if approaching any of the two limits.

r 2006 Elsevier Ltd. All rights reserved.
Strongly nonlinear oscillators with power-form elastic terms have been considered for a long time, see for
instance Refs. [1–18]. Major efforts focused, however, on temporal mode shapes of periodic vibrations and the
amplitude–frequency response.

This paper suggests an approximate solution for damped vibrations that captures two nonsmooth limits of
the restoring force characteristic given by the potential energy of the generalized power form [1,2]

PðxÞ ¼ jxjaþ1=ðaþ 1Þ, (1)

where a is considered as any real number from the interval 0pao1 due to the operation of absolute value
of x.

Within the set of real numbers, the exponent a can be continuously moved to either zero or infinity, where
the potential energy (1) takes different kind of nonsmooth shapes as illustrated by Fig. 1. The corresponding
force dPðxÞ=dx has a finite discontinuity at x ¼ 0 if a ¼ 0 and an infinite discontinuity at x ¼ �1 if a ¼ 1.
Note that, under no damping condition, vibrations of both limit oscillators are described by elementary
functions such as piecewise-parabolic or piecewise-linear periodic functions.

Let us consider now the differential equation of motion of the oscillator with linear damping

€xþ 2m _xþ sgnðxÞjxja ¼ 0, (2)

where overdots mean derivatives with respect to time, t.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Fig. 1. Potential energy representation for the two limit oscillators.
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The approximate analytical solution of Eq. (2) will be derived from the truncated series of successive
approximations for the undamped case, m ¼ 0 [2]

xðtÞ ¼ A sgnðtÞ jtj �
jtjaþ2

aþ 2
�

a
2ðaþ 2Þ

jtjaþ2

aþ 2
�
jtj2aþ3

2aþ 3

� �
� R3 � R4 � � � �

� �
, (3)

where t ¼ tðjÞ and j ¼ jðtÞ are defined such that tðjÞ ¼ ð2=pÞ arcsin sinðpj=2Þ is the triangular wave of the
period T ¼ 4 with respect to the phase variable j whose temporal rate is

_j ¼ o ¼
Aða�1Þ=2ffiffiffiffiffiffiffiffiffiffiffi
aþ 1
p 1þ

a
2ðaþ 2Þ

1þ
ðaþ 1Þ2

ðaþ 2Þð2aþ 3Þ

� �
þ r3 þ r4 þ � � �

� ��1=2
(4)

and expressions

0oRiða; jtjÞo
ajtjaþ2

2i�1ðaþ 2Þ2
,

0oriðaÞo
a

2iðaþ 2Þ
(5)

estimate those terms that will be neglected below.
Estimates (5) indicate that series (3) and (4) converge slowly. However, it will be shown that asymptotics

of large and small exponents a essentially improve precision of the truncated series even though first few terms
of the series are included.

Further, in addition to the truncation, a m-perturbation technique is used in order to adapt solution (3) for
the case of nonzero damping. Note that, for oscillators (2), whether or not the damping is small depends on
the level of amplitude and exponent a. By assuming that the influence of damping is negligible during one cycle
of vibration, one can apply expressions (3) and (4) to estimating the magnitudes of damping and elastic forces.
As a result, the condition of small damping derives in the form

m251
4
ðaþ 1ÞAa�1. (6)

Now, following the idea of parameter variation, let us assume that A ¼ AðmtÞ and thus o ¼ oðmtÞ. Then, as
a first-order asymptotic with respect to m, one obtains [3]

2oðA0 þ AÞ þ o0A ¼ 0, (7)

where 0 � d=dðmtÞ.
Eqs. (4) and (7) admit exact solution

A ¼ C exp �
4mt

aþ 3

� �
; j ¼ j1 1� exp �2m

a� 1

aþ 3
t

� �� �
, (8)
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where C is an arbitrary constant, and

j1 ¼
1

2m
aþ 3

a� 1

Cða�1Þ=2ðaþ 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aþ 6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ 1Þð7a3 þ 31a2 þ 47aþ 24Þ

p . (9)

As follows from expressions (8) and (9), the linear system a ¼ 1 plays the role of a boundary between the
two strongly nonlinear areas

N0 ¼ fa : 0pa51g and N1 ¼ fa : 15ao1g. (10)

In other words, it will be shown below that the magnitude a ¼ 1 separates two qualitatively different regions
of the dynamics determined by the influence of different nonsmooth limits of the potential well. In particular,
if a41 then the phase variable j is bounded by its finite value j1 as t!1. In contrast, if ao1 then the
phase and thus its temporal rate are exponentially growing as the amplitude decays and the system approaches
the bottom of the potential well. The physical meaning of this effect is most clear from the limit case a! 0,
see the discussion below.

Figs. 2–5 illustrate solution (3)–(9) for large and small exponents a, respectively, and suggest quite a good
match with numerical solution in both branches of the exponent (10). The numerical solutions shown by
dashed lines were obtained by the standard solver NDSolve built in Mathematica. Fig. 2 also shows that some
divergence between the curves occurs when the amplitude is decreased to the level about A ¼ 0:6. Below this
level, the condition of small damping (6) is not guaranteed any more. In contrast, the curves are in a better
match for smaller amplitudes if ao1, see Fig. 4. In this case, the amplitude decay just strengthens condition
(6). The phase plane diagrams shown in Figs. 3 and 5 have qualitatively different shapes as dictated by the
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Fig. 3. Phase plane diagram for a 2 N1; v ¼ _x.
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Fig. 2. Temporal mode shape of the vibration for a 2 N1, C ¼ 1:5 and m ¼ 0:04; here and below, the dashed line represents numerical

solutions.
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Fig. 4. Temporal mode shape of the vibration for a 2 N0, C ¼ 2:5 and m ¼ 0:04.
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Fig. 5. Phase plane diagram for a 2 N0; v ¼ _x.
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influence of different nonsmooth limits of the potential well, see Fig. 1. Let us show now that solution (3)
captures both nonsmooth limits a�!0 and 1.

For physically meaningful transition to the limits, let us express the arbitrary parameter C through the
initial velocity v0 ¼ _xjt¼0,

C ¼
v20ðaþ 1Þð7a3 þ 31a2 þ 47aþ 24Þ

2ðaþ 2Þ2ð2aþ 3Þ

� �1=ðaþ1Þ

and consider the two different cases.
(1)
 As a�!1, the solution (3)–(9) gives

x ¼ tðjÞ; j ¼
v0

2m
½1� expð�2mtÞ�. (11)

Solution (11) exactly describes the system motion in the square potential well.

(2)
 When a�!0, expressions (3)–(9) reduce to

x ¼ v20 exp �
4

3
mt

� �
tðjÞ 1�

jtðjÞj
2

� �
; j ¼

3

2mv0
exp

2

3
mt

� �
� 1

� �
, (12)

where the identity sgn[tðjÞ]jtðjÞj � tðjÞ has been taken into account.
If, in addition m ¼ 0, then solution (12) also exactly describes the system dynamics with another nonsmooth
limit of the potential energy, jxj, as shown in Fig. 1. However, if ma0 then substituting solution (12) into the
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differential equation of motion gives an error Oðm2Þ. In terms of first-order asymptotic solutions, the error of
order m occurs on the time period of order 1=m. Therefore, solution (12) exactly captures the carrying shape
of the vibration, but gives only asymptotic estimate for the exponential decay.

Note that the error of solution (3) is due to the error of the iterative procedure for elastic vibrations and the
error of asymptotic for energy dissipation. As shown above, the error of successive approximations vanishes as
either a�!1 or 0, but the error of asymptotic vanishes only as a�!1.

Finally, let us discuss the qualitative difference of the dynamics in the parameter intervals N0 and N1. As
follows from Eq. (8), for a 2 N0, the phase of vibration and the corresponding frequency are exponentially
increasing in the slow time scale mt. In the limit case a ¼ 0, according to solution (12), the amplitude and
frequency are, respectively

AðmtÞ ¼
v20
2
exp �

4

3
mt

� �
and _j ¼

1

v0
exp

2

3
mt

� �
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AðmtÞ

p . (13)

Expressions (13) describe increasingly rapid vibrations—‘dither’—near the corner of the potential energy jxj as the
amplitude approaches zero. In contrast, when a 2 N1, the oscillator makes a limited number of cycles such that the
phase j remains bounded for any time t. Again, the most clear interpretation is obtained in the limit case a!1,
when, as follows from (11), the phase variable jðtÞ represents the total distance passed by the particle by time t, and
_j ¼ v is the absolute value of the velocity. Since the barriers are perfectly elastic the particle reflects with no energy
loss, the velocity vðtÞ remains continuous function of time described by the linear differential equation _vþ 2mv ¼ 0
or €jþ 2m _j ¼ 0. Under the initial conditions jð0Þ ¼ 0 and _jð0Þ ¼ v0, one obtains exactly solution (11).

In conclusion, the explicit analytical solution for a class of strongly nonlinear oscillators with viscous
damping is introduced. Two different nonsmooth functions involved into the solution are associated with two
different nonsmooth limits of the oscillator. As a result, the solution is drastically simplified to give the best
match with numerical tests if approaching any of the two limits.
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